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Motivation

® In recent years plenty of work was done on characterizing
and detecting hate speech.
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' Posts or |
t Comments §
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{ Words |

Social Network

detection

[Burnap and Williams 2017]
[Waseem and Hovy 2016
[Davidson et al. 2016
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Motivation
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Social Network

detection

- the meaning of such content is often not self-contained;

Tlme S up, you all getting what should
have happened Iong ago
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- hate speech != offensive speech

You stupid {insert racial slur here}

[Davidson et al. 2016]
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Motivation

® The previous work focuses on
content, and has shortcomings
related to context.

® Idea: change the focus from the
content, to the user.

- Allows for more sophisticated data collection

- Give annotators context - not isolated tweets

- Richer feature space: activity, net. analysis
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Data Collection | 111

® We begin by sampling
Twitter’s retweet network.
We employ a Direct
Unbiased Random Walk
(DURW) algorithm.

® Obtained 100,386 users,
along with up to 200 tweets
of their timelines.

[Ribeiro, Wang and Tosley 2010]
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Data Collection

® Given the graph, we employ
a hate related lexicon,
tagging the users that
employed the words.

® We use this users as seeds in
a diffusion process based on
DeGroot’s learning.

[Golub and Jackson 2010]
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Data Collection 11 |

number in the range [0,1]
associated with each
individual in the graph.

y -~ ‘ . ® After that, we have a real

® We then perform stratified
sampling, obtaining up to
1500 users in the intervals
10,.25), [.25,.5), [.5,.75), [.75,1).

Motivation > > Results > Future Stuff/Discussion



Data Collection

@ We ask annotators to
determine if users are hateful
or not. They were asked to
use Twitter’s hateful conduct
guideline.

® 3-5 annotators/user,
obtained 4972 annotated
users. 544 were considered
hateful
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® Lastly we also collect the
users who have been
suspended 4 months after
the data collection.

® We use Twitter’s API and
obtain 686 suspended users.
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Results

B Normal User B Normal Neigh. [ ] Suspended [ Active

B Hateful User 1 Hateful Neigh.

® We analyze how hateful and normal users differ w.r.t. their
activity, vocabulary and network centrality.

® We also compare the neighbors of hateful and of normal users,
and suspended /active users to reinforce our findings.

® We compare those in pairs as the sampling mechanism for each of
the populations is different.

® We argue that each one of these pairs contains a proxy for hateful
speech in Twitter.
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Results

Hateful Users are power users

B Hateful User B Normal User [ Hateful Neigh. B Normal Neigh. [ 1 Suspended 1 Active

#statuses/day #followers/day #followees/day H#favorites avg(interval)
30
20K

+ . + + 30K I 100K I
OIII| T 1Y T Y TS T mﬂ il
® Hateful users tweet more, in shorter intervals, favorite more
tweets by other people and follow others more (p-values <0.01).

)

® We observe similar results when comparing their neighborhood
and when comparing active vs. suspended users.
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Results

Hateful users have newer accounts

B Hateful User B Normal User [ Hateful Neigh. B Normal Neigh. [ 1 Suspended 1 Active

® Hateful users were created
later than normal ones

(p-value < 0.001).

Creation Date of Users

4—4
————

——————
e — ® A hypothesis for this difference

L —_— is that hateful users are banned
— more often due to Twitter's
B R guidelines infringement.
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Results

The median hateful user is more central

B Hateful User B Normal User [ Hateful Neigh. B Normal Neigh. [ 1 Suspended 1 Active

median(betweenness median(eigenvector median(out degree . .
( ) - (eig ) ( | %) o Median hateful user is more
e- 0.0001 .
20K central in all three measures.
“tll'l = “ Tl ]
= WM _
0 0 0 .
® Average hateful user isn’t,
avg(betweenness) avg(eigenvector) avg(out degree)
100K 0.0004 | deformed by very
0.0004 influential users.
50K I I 0.0002 i I 0.0002 I I I I
0 0 sk 0 I
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Hatetul users use non—trwlal Vocabulary

B Hateful User B Normal User [ Hateful Pl - Normal Nelg : I:l Suspended 0 Active o
Sadness Swearing Independence & " Pos. Emotions Neg. Emotlon Government / Love X '
0.002 0.002 0.001
0 005 £0.002
Ridicule Masculine Feminine s uﬂerlng Dispute ‘ ’ \
0.002
0.005 0.001
III - III III o I II

Envy Work Politics , Shame Confusion

“tir s ClED AT = ik

® Average values for the sage of EMPATH lexical categories.
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Node Type (%) | Node Type (%) [ Suspended = Active
@_@® /1150 @@ {310 "™ HotefulUser SN Normal User
@-0® 1590 | -0 286
O-0 750 | O—=0 92.5
-0 99.35 O -0 0.65

® hateful users are 71x more likely to retweet another hateful user.

® suspended users are 11x more likely to retweet another suspended user.
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Hateful/Normal Suspended/Active
Modcl Fcaturcs Accuracy Rccall AUC Accuracy Rccall AUC
GradBoost user+glove | 84.6+10 76.7+t24 884+13 | 81.5+£06 789+1.7 R886=0.1
glove 84.4+0.,5 772+21 88413 | BI+07 77716 B70L£0.5
AdaRoost user+glove | 69.1+24 846+19 855=14 | 70.1+01 844+36 843x0.5
glove 69.1+25 84818 8514 | 69.7=10 &83.0%+£03 B827=x0.1
GraphSace user+glove |909+11 B846+60 954+0.2|818+03 856+54 933+1A1
glove 90.3+£19 851+76 949=26 | 845+10 8.5+£39 033+£15

® We can also bring the idea of bringing the focus to the user for the task of classification.

® Features:

- GloVe vectors for the tweets (average);

- Activity /Network centrality attributes;

¢ Beyond new features, we may use the very structure of the network in the classification task.
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Summary
1. Proposed changing the focus from content to user;

2. Proposed a data collection method with less bias
towards a specific lexicon;

3. Observed significant differences w.r.t. activity, lexicon
and net centrality between hateful and normal users.
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4. Showed how the network structure of users can be used
to improve detecting hateful and suspended users.
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Hateful users don't behave like spammers

B Hateful User B Normal User [ Hateful Neigh. B Normal Neigh. [ 1 Suspended 1 Active

#followers /followees #URLs/tweet hashtags/tweet

T 1.5
30 1.5

1
1.0

a0

® We analyze metrics that have been used to detect spammers.

® Hateful user in our dataset do not seem to be abusing hashtags or
mentions, and do not have higher ratios of followers per followees.
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